

NORTHERN CROPS INSTITUTE

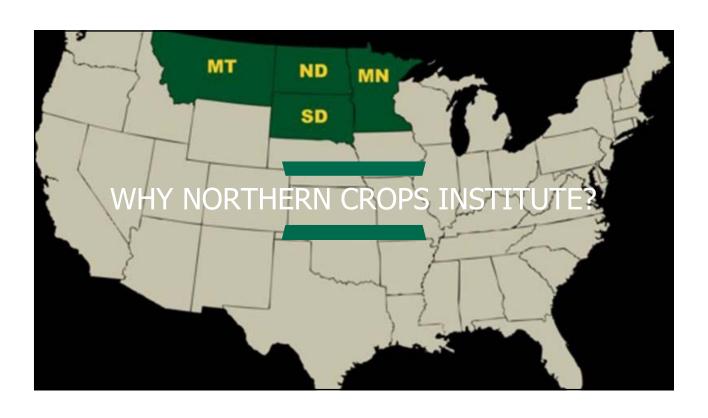
Main Areas of Expertise:

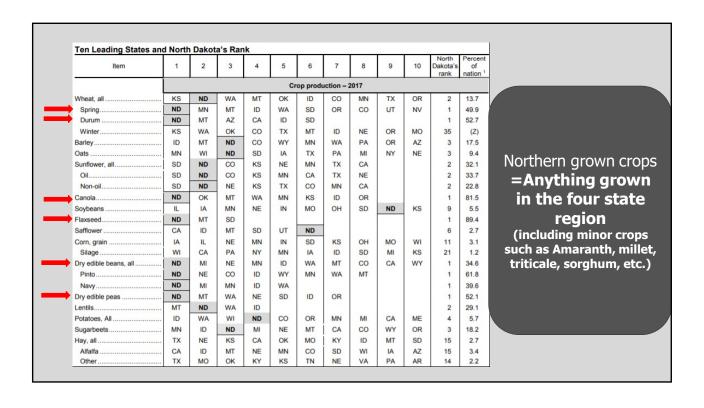
- Educational Courses
- Technical Services

NORTHERN CROPS INSTITUTE

Four state collaboration (Minnesota, Montana, North Dakota, South Dakota) based at North Dakota State University in Fargo, ND. (Century Code 4.1-15)

- · 35 Year History
- · Governed by Northern Crops Council
- · Global Recognition and High Level of Trust
- Strong Core Facilities




NORTHERN CROPS INSTITUTE

We believe that:

- Crops grown in the northern-tier of the U.S. are valued by discriminating world wide customers and will stand the test of quality against competitors.
- Respect for all cultures, economic status and individuality results in valuable relationships.
- Effective partnerships and teamwork are critical to accomplish our mission.
- Adapting to new trends and technologies is necessary to remaining vital to the agricultural industry.

VERSATILE PROCESSING CAPABILITIES PILOT SCALE PROCESSING

- Flour Milling
- Extrusion
- · Oil Pressing
- Hexane Extraction
- Soy Foods
- · Feed Milling
- NIR

- Laboratory Analysis
- Pasta Press
- Baking Facilities
- Canning
- Quality Analysis
- · Hammer Milling
- Pearling

***These Labs/Equipment Used Both For Industry and Education

WHAT ARE PULSES?

Edible seeds of plants in the legume Many activities involving pulses <u>family</u>

- Peas
- Beans
- Lentils
- Chickpeas/garbanzo beans
- · Faba beans
- · Lupin beans
- Pigeon peas

- International year of pulses (2016)
- · World pulse day (Feb. 10)

BENEFITS OF PULSES

- Sustainability
- Nutrition / Health benefits
- Innovation

BENEFITS OF PULSES

- Sustainability
- Nutrition / Health benefits
- Innovation

BENEFITS OF PULSES: SUSTAINABILITY

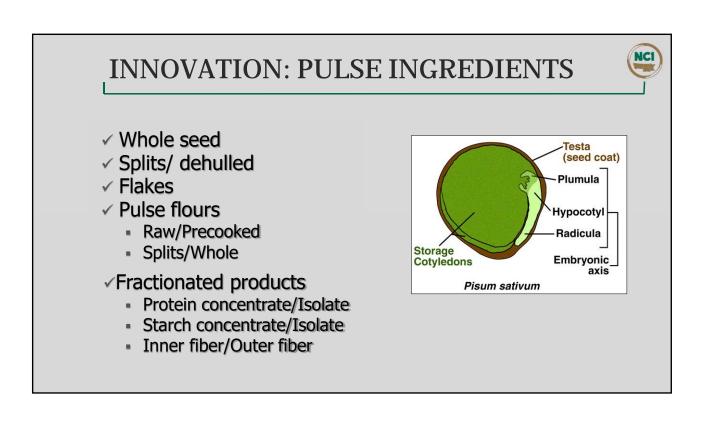
- Plant fixing nitrogen
- Lower energy requirement
- Increased water use efficiency

Hoekstra and Chapagain (2010)

BENEFITS OF PULSES

- Sustainability
- · Nutrition / Health benefits
- Innovation

BENEFITS OF PULSES: NUTRITION


- √ High protein
- √ High dietary fiber
- √ High in antioxidants
- √ High in micronutrients
- ✓ Lower glycemic index scores compared to cereals
- ✓ Low allergen
- √ Gluten-free
- ✓ Non-GMO

BENEFITS OF PULSES

- Sustainability
- Nutrition / Health benefits
- Innovation

PULSE RELATED PROJECTS

- Development of low glycemic index foods by incorporating pulse ingredients into cereal-based products: Use of in vitro screening and in vivo methodologies. 2017. Cereal Chem. 94:110-116
- Collection of glycemic index data to support the marketing of pulse and pulse ingredients (publication yet to be submitted)
- Physicochemical properties of hammer-milled yellow split pea (*Pisum sativum L.*). 2018. Cereal Chem.
- The latest study just initiated
 - · Keyword Sourdough, Whole wheat, Irritable bowel syndrome, pulse flour

PULSE RELATED PROJECTS

- Development of low glycemic index foods by incorporating pulse ingredients into cereal-based products: Use of in vitro screening and in vivo methodologies. 2017. Cereal Chem. 94:110-116
- Collection of glycemic index data to support the marketing of pulse and pulse ingredients (publication yet to be submitted)
- Physicochemical properties of hammer-milled yellow split pea (*Pisum sativum L.*).
 2018, Cereal Chem.
- The latest study just initiated
 - · Keyword Sourdough, Whole wheat, Irritable bowel syndrome, pulse flour

EXPERIMENTAL DESIGN

Ingredients

- Pulse flour
 - Split yellow pea (YP)
 - split green pea (GP)
 - decorticated green lentil (GL)
 - decorticated red lentil (RL)
- Pea protein concentrate
- Pea protein isolate
- Pea fiber

EXPERIMENTAL DESIGN CONT'D

Methods

- Product development: Control and pulse variant (i.e. samples comparable to control but partially replacing wheat flour with pulse ingredients)
- All samples were screened for *in vitro* GI, total starch and resistant starch
- 10 products (5 control, 5 pulse variant) were selected for in vivo with 10 healthy subjects (5M, 5F; 36±14y, 23±4kg/m²)
- Nutrition analysis was conducted to determine available carbohydrate content
- Palatability test was conducted with subjects used in the *in vivo* test (non-trained)

RESULT – PRODUCT DEVELOPMENT

- A total of 94 products were formulated and tested including bread, pasta, crackers, extruded snacks, cookies, cereal bars and muffins.
- Products selected for in vivo GI were:
 - Focaccia (16% green lentil flour)
 - Pasta (50% red lentil flour)
 - Cracker (9% pea protein isolate)
 - Granola bar (9% green lentil flour & 4% puff)
 - Cookie (11% green lentil flour, 0.6% pea protein concentrate and 0.9% pea fiber)

RESULT – PRODUCT DEVELOPMENT

- A total of 94 products were formulated and tested including bread, pasta, crackers, extruded snacks, cookies, cereal bars and muffins.
- Products selected for in vivo GI were:
 - Focaccia (16% green lentil flour)
 - Pasta (50% red lentil flour)
 - Cracker (9% pea protein isolate)
 - Granola bar (9% green lentil flour & 4% puff)
 - Cookie (11% green lentil flour, 0.6% pea protein concentrate and 0.9% pea fiber)

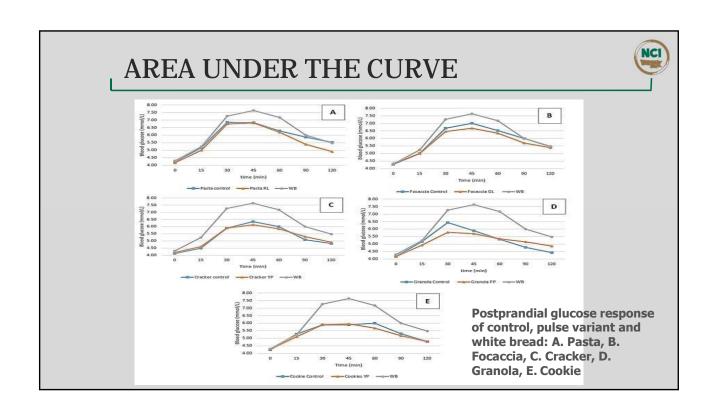
RESULT – IN VITRO GLYCEMIC INDEX

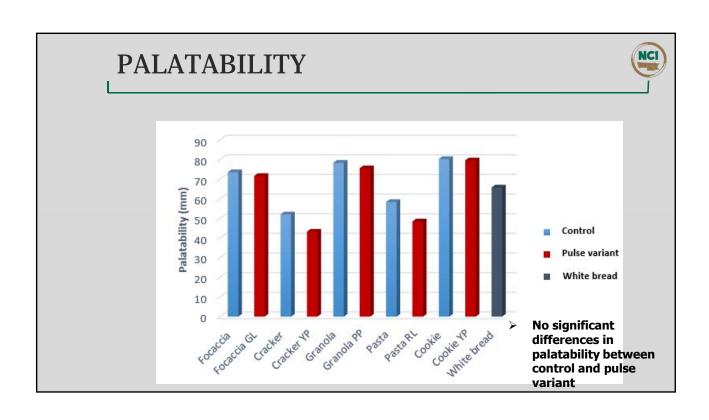
	in vitro GI	LSD	Total Starch	LSD	Resistant Starch	LSD
Focaccia Control	81 ± 0.3	14.5 ^{NS}	59 ± 8.4	9.92 ^{NS}	1.1 ± 0.1	0.59 ^{NS}
Focaccia GL	79 ± 1.2	14.5	48 ± 2.2	9.92	1.8 ± 0.4	0.59
Pasta control	111 ± 3.1	0.4	70 ± 1.8	2.64	0.6 ± 0.04	1.00
Pasta RL	102 ± 1.3	8.4	58 ± 2.0	2.64	1.7 ± 0.5	1.08
Cracker control	75 ± 7.3	12.2	47 ± 3.9	F F2	0.1 ± 0.1	0.40
Cracker YP	56 ± 2.5	12.3	34 ± 2.6	5.53	0.3 ± 0.05	0.49
Granola Control	60 ± 5.9	o ans	25 ± 0.9	1 2 4	0.3 ± 0.01	0 2 4 NS
Granola PP	48 ± 0.5	8.3 ^{NS}	21 ± 0.1	1.34	0.2 ± 0.06	0.24 ^{NS}
Cookie Control	70 ± 4.8	0.0	25 ± 0.5	2.02	0.3 ± 0.2	O CCNS
Cookies YP	58 ± 2.0	9.9	20 ± 0.04	3.93	0.5 ± 0.2	0.66 ^{NS}

¹-Green lentil, ²-Red lentil, ³-pea protein isolate, ⁴-Pea protein concentrate, ⁵-Pea fiber

➤ Mean reduction of 10.8 ± 2.7 in vitro GI units between control and pulse

RESULT – IN VIVO GLYCEMIC INDEX




	In vivo GI	Glycemic load	GI category
Focaccia Control	61 ± 6	31	Medium
Focaccia GL ¹	53 ± 5	27	Low
Pasta control	61 ± 5	31	Medium
Pasta RL ²	55 ± 8	28	Low
Cracker control	46 ± 4	23	Low
Cracker YP ³	42 ± 3	21	Low
Granola Control	35 ± 4	18	Low
Granola PP ⁴	35 ± 5	18	Low
Cookie Control	42 ± 4	21	Low
Cookies YP ⁵	38 ± 3	19	Low

¹-Green lentil, ²-Red lentil, ³-pea protein isolate, ⁴-Pea protein concentrate, ⁵-Pea fiber

> Mean reduction of 4.8 ± 2.6 in vivo GI units between control and pulse

NS indicate that there is no significant differences

CONCLUSION

- > Pulse fortification reduced the in vitro and in vivo GI by 10.8 ± 2.7 and 4.8 ± 2.6 units respectively
- Extent of result varied depending on products and processing methods
- > Substituting wheat with pulse ingredients reduces GI without changing palatability

